skip to main content


Search for: All records

Creators/Authors contains: "Lindell, Michael K."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract. Previous tsunami evacuation simulations have mostly been based on arbitrary assumptions or inputs adapted from non-emergency situations, but a few studies have used empirical behavior data. This study bridges this gap by integrating empirical decision data from surveys on local evacuation expectations and evacuation drills into an agent-based model of evacuation behavior for two Cascadia subduction zone (CSZ) communities that would be inundated within 20–40 min after a CSZ earthquake. The model also considers the impacts of liquefaction and landslides from the earthquake on tsunami evacuation. Furthermore, we integrate the slope-speed component from least-cost distance to build the simulation model that better represents the complex nature of evacuations. The simulation results indicate that milling time and the evacuation participation rate have significant nonlinear impacts on tsunami mortality estimates. When people walk faster than 1 m s−1, evacuation by foot is more effective because it avoids traffic congestion when driving. We also find that evacuation results are more sensitive to walking speed, milling time, evacuation participation, and choosing the closest safe location than to other behavioral variables. Minimum tsunami mortality results from maximizing the evacuation participation rate, minimizing milling time, and choosing the closest safe destination outside of the inundation zone. This study's comparison of the agent-based model and the beat-the-wave (BtW) model finds consistency between the two models' results. By integrating the natural system, built environment, and social system, this interdisciplinary model incorporates substantial aspects of the real world into the multi-hazard agent-based platform. This model provides a unique opportunity for local authorities to prioritize their resources for hazard education, community disaster preparedness, and resilience plans. 
    more » « less
  2. Though significant research exists on earthquake hazard adjustment adoption more generally, research focused on how information seeking influences planned or actual preparedness behavior is rare, limiting our understanding of how information seeking translates into preparedness. To address this gap, our study tests a proposed model of household seismic hazard adjustment using questionnaire responses of roughly 400 households living in the Portland, OR metropolitan region. The proposed model includes components of the Protective Action Decision Model (PADM) with specific emphasis on past information seeking behavior, preparedness behavior, intentions to seek information, and intentions to take protective action. Other components include risk perception, earthquake experience, affective response, seismic risk zone residency, and demographics. Consistent with previous research, this study finds information seeking behavior to be the strongest influence on preparedness with other important influences being risk perception, affective response, and intentions to prepare. We find weak ties between risk zone residency and earthquake risk perception, though this may be because our sample has little experience with earthquakes and the majority live in the same earthquake risk zones. Importantly, longitudinal studies are needed to determine whether information seeking and intentions to prepare eventually result in household protective action. 
    more » « less
  3. Abstract

    This study describes a novel method of assessing risk communication effectiveness by reporting an evaluation of a tsunami information brochure by 90 residents of three Pacific coast communities that are vulnerable to a Cascadia Subduction Zone earthquake and tsunami—Commencement Bay, Washington; Lincoln City, Oregon; and Eureka, California. Study participants viewed information that was presented inDynaSearch, an internet‐based computer system that allowed them to view text boxes and tsunami inundation zone maps.DynaSearchrecorded the number of times each text box or map was clicked and the length of time that it was viewed. This information viewing phase was followed by questionnaire pages assessing important aspects of tsunami hazard and sources of tsunami warnings. Participants gave the longest click durations to what to do in the emergency period during earthquake shaking and in its immediate aftermath before a tsunami arrives—topics that should be displayed prominently in tsunami brochures and emphasized in talks to community groups. The smallest adjusted click durations were associated with advance preparations for a tsunami—topics that can be posted on websites whose URLs are printed in the brochures.

     
    more » « less
  4. A Cascadia Subduction Zone (CSZ) earthquake will cause widespread damage along the Pacific Northwest (PNW) coast of the United States. It is, therefore, crucial to understand how to reduce future impacts across this region and assess current levels of household preparedness. Here, we examine whether decades of risk and preparedness campaigns have established protective knowledge and promoted hazard adjustments for residents of the Portland, Oregon metropolitan (PDX) region, an area where risk and preparedness campaigns have been increasing over the last decade. We also explore how PDX preparedness levels compare to those in other PNW regions using analogous data from multiple surveys over a 20-year time interval and assess PDX respondent’s perceptions of risk information sources. We find that 63% of PDX residents do not intend to “Drop, Cover, and Hold On” (DCHO) when earthquake shaking starts and that, although residents are generally aware of earthquake hazards in the area, they are less aware of the specific risks for their homes. Furthermore, PDX residents’ preparedness levels seem to be comparable to those recently surveyed in Washington, but somewhat less than those surveyed two decades ago in California, though more comprehensive data are needed to verify these results. We also find that people rate risk information provided by emergency managers and their websites as more accurate, understandable, relevant, and new than other sources. Our results suggest that significant gaps remain in translating broad awareness of the CSZ earthquake into personal knowledge and preparedness. This work provides guidance to PDX emergency educators for more targeted messaging and provides methods to measure preparedness variables in other regions for future comparisons. By paying close attention to preparedness gaps, local officials can use their limited resources more effectively to develop strategies to inform their communities and improve preparedness before a major earthquake strikes.

     
    more » « less
  5. This study analyzes 488 household residents’ responses to the 2018 Indonesia M7.5 earthquake and tsunami. Comparison of this event with past earthquake and tsunami events, such as the 2009 Samoa (M8.1), 2011 Christchurch (M6.3), and 2011 Tohoku (M9.0) events, identifies commonalities and differences among people’s responses to these events. The results show that many Palu respondents failed to recognize strong earthquake ground motion as an environmental cue to a tsunami, but this was partially offset by an informal peer warning network. Most of the warnings only mentioned one of the six recommended message elements—the tsunami hazard. However, this brief message might have been adequate for many people if they could infer the certainty, severity, and immediacy of the threat, and appropriate evacuation modes, routes, and destinations. Unlike two comparison cases, some Palu respondents actually began their evacuation later than they expected the tsunami to strike. This might be due to spending too much time milling (seeking additional information, relaying warnings, reuniting families, and preparing to evacuate)—given the tsunami’s extremely rapid onset. This finding underscores the need for coastal emergency managers to promote evacuation preparedness for near-field tsunamis in which households pack Grab and Go kits in advance, warn others while evacuating, and plan in advance where to reunite household members who must evacuate separately.

     
    more » « less
  6. Abstract

    A water main break that contaminated the Boston area's water distribution system prompted a four‐day “boil water” order. To understand risk communication during this incident, 600 randomly sampled residents were mailed questionnaires, yielding 110 valid responses. This article describes how perceptions of different social stakeholders influenced whether respondents complied with the Protective Action Recommendation—PAR (i.e., drank boiled water), took alternative protective actions (i.e., drank bottled water or/and self‐chlorinated water), or ignored the threat (i.e., continued to drink untreated tap water). Respondents perceived technical authorities (i.e., water utility, public health, and emergency management) to be higher on three social influence attributes (hazard expertize, trustworthiness, and protection responsibility) than public (i.e., news media, elected officials) and private (i.e., self/family, peers, and personal physicians) intermediate sources. Furthermore, respondents were most likely to comply with the PAR if they perceived authorities and public intermediates to be high on all three attributes and if they had larger households and lower income. Contrarily, they were more likely to take alternative actions if they were younger and had higher levels of income, risk perception, and emergency preparedness. These results underscore the need for technical authorities to develop credibility with their potential audiences before a crisis occurs.

     
    more » « less